

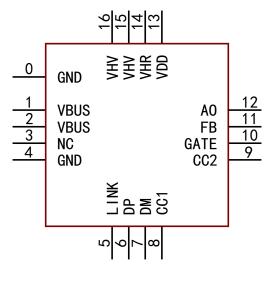
USB PD 等多快充协议芯片 CH238

版本: 1A

http://wch.cn

1. 概述

CH238 为 QFN16 封装的 Type-C 单口快充协议芯片,支持 PD3. 0/2. 0、PPS 等 Type-C 快充协议,并且支持 BC1. 2 等其它快充协议。CH238 支持全反馈电流调节模式和增量开环电流调节模式,可用于直接光耦控制电压调节或 FB 灌电流电压调节,芯片内置电源通路 NMOS,带有 VBUS 检测与放电功能,并且提供过温保护。


2. 功能特点

- 支持3.3V-22V宽电压输入
- 内置NMOS, 耐压25V, 最大持续导通电流为3.25A
- 支持PD2. 0/3. 0、PPS、BC1. 2等多种快充协议
- 支持全反馈电流调节模式,可用于直接光耦控制电压调节
- 支持TL431和DC-DC等器件的FB灌电流电压调节,调压精度20mV
- 内置过温保护0TP

3. 应用场合

- 交流电源适配器
- 车载充电器
- UPS
- 移动电源

4. 封装

CH238P (QFN16)

5. 引脚

引脚号	引曲夕护	引脚说明		
CH238P	引脚名称			
15, 16	VHV	高压正电源输入端,需要外接电源退耦电容		
13	VDD	内部电源调节器 LDO 输出和内部工作电源输入, 需外接容量 1uF 退耦电容		
0, 4	GND	公共接地端		
11	FB	可调灌电流输入端,用于电压反馈调节		
10	GATE	外置 NMOS 功率管的栅极控制端		
12	AO	用于直接光耦控制电压调节		
8	CC1	Tura_C_DD 协会协议通讯总统		
9	CC2	Type-C PD 快充协议通讯总线		
6	DP	Type-A 快充协议通讯总线		
7	DM	Type-A 沃尤例及通讯志线		
1, 2	VBUS	电源输出脚, 兼 VBUS 检测与放电管脚		
	VHR	选择电源管理的驱动模式:		
14		VHR短接VDD则AO有效,用于直接光耦控制电压调节;		
		VHR悬空或接地则AO无效,用于FB灌电流电压调节;		
5	LINK	多芯片通信引脚		
3	NC	保留引脚,不连接		

6. 典型应用电路

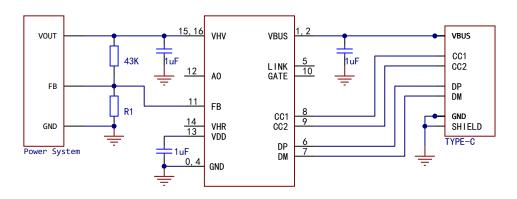


图 6.1 CH238 配合 FB 调节参考原理图

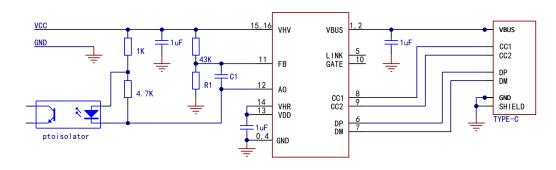


图 6.2 CH238 配合光耦调节参考原理图

7. 功能描述

7.1. VHV、VDD 引脚

CH238 的 VHV 引脚为芯片的高压电源输入引脚,连接电源的输出端,外部需连接 1uF 退耦电容,芯片内部连接到 LD0 及芯片内部高压 NMOS 漏极。VDD 引脚为 CH238 内部电源调节器 LDO 输出和内部工作电源输入,外部需连接 1uF 退耦电容。

7. 2. 电源通路 NMOS 及栅极驱动器

CH238 内置一颗电源通路 NMOS, 其耐压为 25V, 可承受的最大持续导通电流为 3.25A, 可用于控制电源从 VHV 向 VBUS 的导通。芯片的 GATE 引脚为内部栅极驱动器的引出脚, 用于驱动内部 NMOS, 也可以驱动外部 N-MOSFET。

若需要获得较低的导通阻抗,可外部并联 N-MOSFET。

7.3.FB、AO、VHR 引脚

CH238 支持全反馈电流调节模式,可用于直接光耦控制电压调节,同时支持增量开环电流调节模式,可用于 FB 灌电流电压调节。可使用 VHR 引脚进行驱动模式选择, VHR 短接 VDD 则 AO 有效, VHR 悬空或接地则 AO 无效。

当 CH238 为全反馈电流调节模式时, A0 引脚可直接控制 AC-DC 电源光耦, FB 内部参考电压约 1.2V, 如图 6.2 所示, FB 管脚上的上偏电阻固定为 43K 1%或更高精度, 下偏电阻 R1 根据默认电源电压的不同选择, 默认 3.3V 时 R1 可选 24.3K。反馈电容 C1 用于调节升降电压的速度, 电容值越小调节越快。

当 CH238 为增量开环电流调节模式时,FB 引脚内部有可控的灌电流,配合 DC-DC 系统的FB 管脚可实现对电源系统输出电压的控制。使用时应设置FB 管脚上的上偏电阻固定为 43K 1%或更高精度,并根据FB 电压计算下偏电阻,使电源系统默认输出电压为 3.3V。

以图 6.1 中 R1 阻值计算举例:

对于 FB 电压为 0.8V 的 DC-DC 系统,上偏 43K,下偏电阻 R1 取 13.7K,默认输出电压为: ((39/13.7)+1)*0.8 = 3.31V

7. 4. CC1/CC2/DP/DM 引脚

CC1/CC2 引脚用于设备接入检测和 PD 协议握手, CH238 支持 Type-C 协议定义的 DFP 模式 500mA, 1.5A 或者 3A 的电流广播。

DP/DM 引脚用于 BC1.2 等相关协议握手。

7. 5. VBUS 引脚

VBUS 引脚连接芯片内部高压 NMOS 源极,为 VBUS 电源输出端,同时提供过压保护和电源放电功能,可加快电源电压调节速度,泄放 Type-C 接口余电。

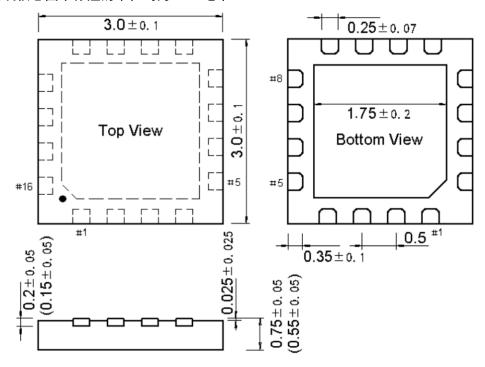
8. 参数

8.1. 绝对最大值

(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明		最小值	最大值	单位
TA	工作时的环境温度	VHV=4V~16V	-40	110	°C
		VHV=2. 8V~22V	-40	85	°C
TS	储存时的环境温度		-55	125	°C
VHV	高压电源电压(VHV 引脚接电源,GND 引脚接地)		-0. 5	25. 0	٧
V10	非高压引脚上的电压		-0. 5	VDD+0. 5	V
VIOCC	自身低压但可承受高压引脚(CC1, CC2)上的电压		-0. 5	22. 0	٧
VIOHV	高压引脚(VBUS, A0)上的电压		-0.5	25. 0	٧
VIOHX	自升压高压引脚(GATE)上的电压		-0.5	VHV+6. 5	٧
INMOS	NMOS 功率管的连续导通电流			3. 5	Α
PD	整个芯片的最大功耗(VHV 电压*电流+各放电功耗)			300	mW

8. 2. 电气参数


(测试条件: TA=25℃)

名称	参数说明		最小值	典型值	最大值	单位
VHV	高压电源电压 VHV		3. 3	5. 2	22	٧
ICC	工作时的电源电流	VHV=20V		1. 2	15	
		VHV=5V		1. 0	8	mA
VLD0	内部 VDD 电源调节器 LDO 输出电压		3. 2	3. 3	3. 4	٧
RNMOS	NMOS 功率管的导通电阻		14	20	30	mΩ
ILD0	内部 VDD 电源调节器 LDO 对外负载能力				10	mA
IFB	FB 引脚的吸入电流			0~511		uA
ILINK	LINK 引脚的上拉电流(到 VDD)		20	40	80	uA
IDIS	VBUS 引脚放电电流		5	10	16	mA
TOTA	CH238 超温报警模块 OTA 的参考阈值温度			125±15		°C
VR	电源上电复位的电压门限		2. 5	2. 7	2. 9	٧

9. 封装信息

封装形式	塑体宽度	引脚间距		封装型号
QFN16	3×3mm	0. 50mm	19.7mil	CH238P

说明: 封装信息图中标注的单位均为 mm(毫米)。

